module BatSet:Sets over ordered types.sig..end
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
Note OCaml, Batteries Included, provides two implementations
of sets: polymorphic sets and functorized sets. Functorized sets
(see BatSet.S and BatSet.Make) offer a more complex and slightly poorer
set of features but stronger type-safety. Polymorphic sets are
easier to use and have a few more powerful features but make it
easier to shoot yourself in the foot. In case of doubt,
functorized sets.
The functorized set implementation is built upon Stdlib's
Set
module, but provides the complete interface.
Author(s): Xavier Leroy (Base module), David Teller
module type OrderedType = BatInterfaces.OrderedTypeSet.Make.
module type S =sig..end
Set.Make.
module StringSet:Swith type elt = String.t
module IStringSet:Swith type elt = String.t
module NumStringSet:Swith type elt = String.t
module RopeSet:Swith type elt = BatRope.t
module IRopeSet:Swith type elt = BatRope.t
module IntSet:Swith type elt = BatInt.t
module CharSet:Swith type elt = Char.t
module Make:
type 'a t
include BatEnum.Enumerable
include BatInterfaces.Mappable
val empty : 'a tcompare as comparison functionval create : ('a -> 'a -> int) -> 'a tval singleton : ?cmp:('a -> 'a -> int) -> 'a -> 'a tval is_empty : 'a t -> boolval mem : 'a -> 'a t -> boolmem x s tests whether x belongs to the set s.val add : 'a -> 'a t -> 'a tadd x s returns a set containing all elements of s,
plus x. If x was already in s, s is returned unchanged.val remove : 'a -> 'a t -> 'a tremove x s returns a set containing all elements of s,
except x. If x was not in s, s is returned unchanged.val iter : ('a -> unit) -> 'a t -> unititer f s applies f in turn to all elements of s.
The elements of s are presented to f in increasing order
with respect to the ordering over the type of the elements.val map : ('a -> 'b) -> 'a t -> 'b tmap f x creates a new set with elements f a0,
f a1... f an, where a1, ..., an are the
values contained in xval filter : ('a -> bool) -> 'a t -> 'a tfilter p s returns the set of all elements in s
that satisfy predicate p.val filter_map : ('a -> 'b option) -> 'a t -> 'b tfilter_map f m combines the features of filter and
map. It calls calls f a0, f a1, f an where a0..an
are the elements of m and returns the set of pairs bi
such as f ai = Some bi (when f returns None, the
corresponding element of m is discarded).val fold : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'bfold f s a computes (f xN ... (f x2 (f x1 a))...),
where x1 ... xN are the elements of s, in increasing order.val exists : ('a -> bool) -> 'a t -> boolexists p s checks if at least one element of
the set satisfies the predicate p.val cardinal : 'a t -> intval choose : 'a t -> 'aInvalid_argument if given an empty set.val min_elt : 'a t -> 'aInvalid_argument if given an empty set.val max_elt : 'a t -> 'aInvalid_argument if given an empty set.val enum : 'a t -> 'a BatEnum.tval of_enum : 'a BatEnum.t -> 'a tval for_all : ('a -> bool) -> 'a t -> boolval partition : ('a -> bool) -> 'a t -> 'a t * 'a tval filter : ('a -> bool) -> 'a t -> 'a tval pop : 'a t -> 'a * 'a tNot_found if given an empty setval union : 'a t -> 'a t -> 'a tunion s t returns the union of s and t - the set containing
all elements in either s and t. The returned set uses t's
comparison function. The current implementation works better for
small s.val diff : 'a t -> 'a t -> 'a tdiff s t returns the set of all elements in s but not in
t. The returned set uses s's comparison function.val print : ?first:string ->
?last:string ->
?sep:string ->
('a BatInnerIO.output -> 'b -> unit) ->
'a BatInnerIO.output -> 'b t -> unit