module BatSet:Sets over ordered types.sig
..end
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
Note OCaml, Batteries Included, provides two implementations
of sets: polymorphic sets and functorized sets. Functorized sets
(see BatSet.S
and BatSet.Make
) offer a more complex and slightly poorer
set of features but stronger type-safety. Polymorphic sets are
easier to use and have a few more powerful features but make it
easier to shoot yourself in the foot. In case of doubt,
functorized sets.
The functorized set implementation is built upon Stdlib's
Set
module, but provides the complete interface.
Author(s): Xavier Leroy (Base module), David Teller
module type OrderedType = BatInterfaces.OrderedType
Set.Make
.
module type S =sig
..end
Set.Make
.
module StringSet:S
with type elt = String.t
module IStringSet:S
with type elt = String.t
module NumStringSet:S
with type elt = String.t
module RopeSet:S
with type elt = BatRope.t
module IRopeSet:S
with type elt = BatRope.t
module IntSet:S
with type elt = BatInt.t
module CharSet:S
with type elt = Char.t
module Make:
type 'a
t
include BatEnum.Enumerable
include BatInterfaces.Mappable
val empty : 'a t
compare
as comparison functionval create : ('a -> 'a -> int) -> 'a t
val singleton : ?cmp:('a -> 'a -> int) -> 'a -> 'a t
val is_empty : 'a t -> bool
val mem : 'a -> 'a t -> bool
mem x s
tests whether x
belongs to the set s
.val add : 'a -> 'a t -> 'a t
add x s
returns a set containing all elements of s
,
plus x
. If x
was already in s
, s
is returned unchanged.val remove : 'a -> 'a t -> 'a t
remove x s
returns a set containing all elements of s
,
except x
. If x
was not in s
, s
is returned unchanged.val iter : ('a -> unit) -> 'a t -> unit
iter f s
applies f
in turn to all elements of s
.
The elements of s
are presented to f
in increasing order
with respect to the ordering over the type of the elements.val map : ('a -> 'b) -> 'a t -> 'b t
map f x
creates a new set with elements f a0
,
f a1
... f an
, where a1
, ..., an
are the
values contained in x
val filter : ('a -> bool) -> 'a t -> 'a t
filter p s
returns the set of all elements in s
that satisfy predicate p
.val filter_map : ('a -> 'b option) -> 'a t -> 'b t
filter_map f m
combines the features of filter
and
map
. It calls calls f a0
, f a1
, f an
where a0..an
are the elements of m
and returns the set of pairs bi
such as f ai = Some bi
(when f
returns None
, the
corresponding element of m
is discarded).val fold : ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
fold f s a
computes (f xN ... (f x2 (f x1 a))...)
,
where x1 ... xN
are the elements of s
, in increasing order.val exists : ('a -> bool) -> 'a t -> bool
exists p s
checks if at least one element of
the set satisfies the predicate p
.val cardinal : 'a t -> int
val choose : 'a t -> 'a
Invalid_argument
if given an empty set.val min_elt : 'a t -> 'a
Invalid_argument
if given an empty set.val max_elt : 'a t -> 'a
Invalid_argument
if given an empty set.val enum : 'a t -> 'a BatEnum.t
val of_enum : 'a BatEnum.t -> 'a t
val for_all : ('a -> bool) -> 'a t -> bool
val partition : ('a -> bool) -> 'a t -> 'a t * 'a t
val filter : ('a -> bool) -> 'a t -> 'a t
val pop : 'a t -> 'a * 'a t
Not_found
if given an empty setval union : 'a t -> 'a t -> 'a t
union s t
returns the union of s
and t
- the set containing
all elements in either s
and t
. The returned set uses t
's
comparison function. The current implementation works better for
small s
.val diff : 'a t -> 'a t -> 'a t
diff s t
returns the set of all elements in s
but not in
t
. The returned set uses s
's comparison function.val print : ?first:string ->
?last:string ->
?sep:string ->
('a BatInnerIO.output -> 'b -> unit) ->
'a BatInnerIO.output -> 'b t -> unit